Pular para o conteúdo principal
MOVIMENTO DE PROPORCIONALIDADE NOS SISTEMAS SDCTIE GRACELI E TENSOR G+


ONDE TODOS OS MOVIMENTOS PROCURAM VARIA CONFORME A  ENERGIA E A MASSA.

ONDE CONFORME AUMENTA A ENERGIA E DIMINUI A MASSA AUMENTA A ACELERAÇÃO,  INSTABILIDADE , ALEATORIEDADE DE TODOS OS MOVIMENTOS COMO:
DILATAÇÕES, FLUXOS, SALTOS QUÂNTICO, SPINS E ROTAÇÕES, TRANSLAÇÕES, E OUTROS.

E CONFORME O SDCTIE GRACELI E TENSOR G+ GRACELI.








Função de onda na mecânica quântica é algo que descreve o estado quântico de um sistema de uma ou mais partículas, e contém todas as informações sobre o sistema considerado isolado. Quantidades associadas com os cálculos, tais como o momento médio de uma partícula, são derivados a partir da função de onda por meio de operações matemáticas que descrevem a sua interação com os dispositivos de observação. Assim, a função de onda é uma entidade central na mecânica quântica. Os símbolos mais comuns para uma função de onda são as letras gregas ψ ou Ψ . A equação de Schrödinger determina como a função de onda evolui ao longo do tempo, ou seja, a função de onda é a solução da equação de Schrödinger. A função de onda se comporta qualitativamente como outras ondas, como ondas de água ou ondas em uma corda, porque a equação de Schrödinger é matematicamente um tipo de equação de onda. Isso explica o nome "função de onda", e dá origem a dualidade onda-partícula. A onda da função de onda, no entanto, não é uma onda no espaço físico; é uma onda em um "espaço" matemático abstrato, que pode ser representado como "espaço de configuração", ou pode ser representado como "espaço de momentum", e, por isso se difere fundamentalmente de ondas de água ou ondas em uma corda.[1][2][3][4][5][6][7]

Interpretação

A interpretação física da função de onda depende do contexto. Veja alguns exemplos a seguir:

Uma partícula em uma dimensão espacial

A função de onda espacial associada a uma partícula em uma dimensão é uma função complexa  definida no conjunto dos números reais.

Interpretação estatística de Born

Na interpretação de Max Born, o quadrado da função de onda, é interpretado como a densidade de probabilidade de encontrar a partícula na posição x em determinado tempo [8], por isso, a probabilidade de a medição da posição da partícula dar um valor no intervalo  é

.
----------------------------------------

G +  E SDCTIE GRACELI 



Isto leva à condição de normalização

.
----------------------------------------

G +  E SDCTIE GRACELI 

já que a medição da posição de uma partícula deve resultar em um número real.


Esse pensamento sendo associado com a Interpretação de Copenhague que foi feita pelo próprio Niels Bohr e Werner Heisenberg, define que não é possível determinar exatamente a posição da partícula, é possível somente determinar a probabilidade estatística, sendo assim, neste caso é entendida como um dado considerado inquestionável já que "Não faz sentido especular para além daquilo que pode ser medido".[9]




radiação eletromagnética é uma oscilação em fase dos campos elétricos e magnéticos, que, autossustentando-se, encontram-se desacoplados das cargas elétricas que lhe deram origem. As oscilações dos campos magnéticos e elétricos são perpendiculares entre si e podem ser entendidas como a propagação de uma onda transversal, cujas oscilações são perpendiculares à direção do movimento da onda (como as ondas da superfície de uma lâmina de água), que pode se deslocar através do vácuo. Dentro do ponto de vista da Mecânica Quântica, podem ser entendidas, ainda, como o deslocamento de pequenas partículas, os fótons.

O espectro visível, ou simplesmente luz visível, é apenas uma pequena parte de todo o espectro da radiação eletromagnética possível, que vai desde as ondas de rádio aos raios gama. A existência de ondas eletromagnéticas foi prevista por James Clerk Maxwell e confirmada experimentalmente por Heinrich Hertz. A radiação eletromagnética encontra aplicações como a radiotransmissão, seu emprego no aquecimento de alimentos (fornos de micro-ondas), em lasers para corte de materiais ou mesmo na simples lâmpada incandescente.

A radiação eletromagnética pode ser classificada de acordo com a frequência da onda, em ordem crescente, nas seguintes faixas: ondas de rádiomicro-ondasradiação terahertzradiação infravermelhaluz visívelradiação ultravioletaraios X e radiação gama.

Ondas eletromagnéticas

Representação esquemática de uma onda eletromagnética linearmente polarizada produzida por um dipolo elétrico oscilante (à esquerda). A onda se propaga ao longo do eixo horizontal com comprimento de onda λ (ao centro). O campo elétrico, o campo magnético e o vetor de onda são representados, respectivamente, em azul, vermelho e preto (à direita).

As ondas eletromagnéticas primeiramente foram previstas teoricamente por James Clerk Maxwell e depois confirmadas experimentalmente por Heinrich Hertz. Maxwell notou as ondas a partir de equações de electricidade e magnetismo, revelando sua natureza e sua simetria. Faraday mostrou que um campo magnético variável no tempo gera um campo eléctrico. Maxwell mostrou que um campo eléctrico variável com o tempo gera um campo magnético, com isso há uma autossustentação entre os campos eléctrico e magnético. Em seu trabalho de 1862, Maxwell escreveu:

"A velocidade das ondas transversais em nosso meio hipotético, calculada a partir dos experimentos electromagnéticos dos Srs. Kohrausch e Weber, concorda tão exactamente com a velocidade da luz, calculada pelos experimentos óticos do Sr. Fizeau, que é difícil evitar a inferência de que a luz consiste nas ondulações transversais do mesmo meio que é a causa dos fenômenos eléctricos e magnéticos."[carece de fontes]

Ondas harmônicas

Uma onda harmônica é uma onda com a forma de uma função senoidal, como na figura, no caso de uma onda que se desloca no sentido positivo do eixo dos .

A distância  entre dois pontos consecutivos onde o campo e a sua derivada têm o mesmo valor, é designada por comprimento de onda (por exemplo, a distância entre dois máximos ou mínimos consecutivos). O valor máximo do módulo do campo, , é a sua amplitude.

Onda Harmônica

O tempo que a onda demora a percorrer um comprimento de onda designa-se por {período}, .

O inverso do período é a frequência , que indica o número de comprimentos de onda que passam por um ponto, por unidade de tempo. No sistema SI a unidade da frequência é o hertz, representado pelo símbolo Hz, equivalente a .

No caso de uma onda eletromagnética no vácuo, a velocidade de propagação é  que deverá verificar a relação:

----------------------------------------

G +  E SDCTIE GRACELI 

A equação da função representada na figura acima é:

----------------------------------------

G +  E SDCTIE GRACELI 

onde a constante  é a fase inicial. Essa função representa a forma da onda num instante inicial, que podemos admitir .

Para obter a função de onda num instante diferente, teremos que substituir  por , já que a onda se propaga no sentido positivo do eixo dos , com velocidade .

----------------------------------------

G +  E SDCTIE GRACELI 


usando a relação entre a velocidade e o período, podemos escrever:

----------------------------------------

G +  E SDCTIE GRACELI 

Se substituirmos , obteremos a equação que descreve o campo elétrico na origem, em função do tempo:

----------------------------------------

G +  E SDCTIE GRACELI 

assim, o campo na origem é uma função sinusoidal com período  e amplitude . O campo em outros pontos tem exatamente a mesma forma sinusoidal, mas com diferentes valores da fase.[1]

Propriedades

Os campos eléctrico e magnético obedecem aos princípios da superposição de ondas, de modo que seus vectores se cruzam e criam os fenômenos da refracção e da difração.[carece de fontes] Uma onda eletromagnética pode interagir com a matéria e, em particular, perturbar átomos e moléculas que as absorvem, podendo os mesmos emitir ondas em outra parte do espectro.

Como qualquer fenômeno ondulatório, as ondas eletromagnéticas podem interferir entre si. Sendo a luz uma oscilação, ela não é afetada pela estática eléctrica ou por campos magnéticos de uma outra onda eletromagnética no vácuo. Em um meio não linear, como um cristal, por exemplo, interferências podem acontecer e causar o efeito Faraday, em que a onda pode ser dividida em duas partes com velocidades diferentes.[carece de fontes]

Na refracção, uma onda, transitando de um meio para outro de densidade diferente, tem alteradas sua velocidade e sua direcção (caso esta não seja perpendicular à superfície) ao entrar no novo meio. A relação entre os índices de refracção dos dois meios determina a escala de refração medida pela lei de Snell:

----------------------------------------

G +  E SDCTIE GRACELI 

Nesta equação, i é o ângulo de incidência, N1 é o índice de refração do meio 1, r é o ângulo de refração, e N2 é o índice de refração do meio 2.

A luz se dispersa em um espectro visível porque é reflectida por um prisma, devido ao fenômeno da refração. As características das ondas eletromagnéticas demonstram as propriedades de partículas e da onda ao mesmo tempo, e se destacam mais quando a onda é mais prolongada.

Modelo de onda eletromagnética

Um importante aspecto da natureza da luz é a frequência uma onda, sua taxa de oscilação. É medida em hertz, a unidade SIU de frequência, na qual um hertz (1,00 Hz) é igual a uma oscilação por segundo. A luz normalmente tem um espectro de frequências que, somadas, juntos formam a onda resultante. Diferentes frequências formam diferentes ângulos de refração. Uma onda consiste nos sucessivos baixos e altos, e a distância entre dois pontos altos ou baixos é chamado de comprimento de onda. Ondas eletromagnéticas variam de acordo com o tamanho, de ondas de tamanhos de prédios a ondas gama pequenas menores que um núcleo atômico. A frequência é inversamente proporcional ao comprimento da onda, de acordo com a equação:

.

----------------------------------------

G +  E SDCTIE GRACELI 

Nesta equação, v é a velocidade, λ (lambda) é o comprimento de onda, e f é a frequência da onda.

Na passagem de um meio material para outro, a velocidade da onda muda, mas a frequência permanece constante. A interferência acontece quando duas ou mais ondas resultam em um novo padrão de onda. Se os campos tiverem as componentes nas mesmas direções, uma onda "coopera" com a outra (interferência construtiva); entretanto, se estiverem em posições opostas, pode haver uma interferência destrutiva.

Modelo de partículas

Um feixe luminoso é composto por pacotes discretos de energia, caracterizados por consistirem em partículas denominadas fotões (português europeu) ou fótons (português brasileiro). A frequência da onda é proporcional à magnitude da energia da partícula. Como os fótons são emitidos e absorvidos por partículas, eles actuam como transportadores de energia. A energia de um fóton é calculada pela equação de Planck-Einstein:

.

----------------------------------------

G +  E SDCTIE GRACELI 


Nesta equação, E é a energia, h é a constante de Planck, e f é a frequência.

Se um fóton for absorvido por um átomo, ele excita um electrão (português europeu) ou elétron (português brasileiro), elevando-o a um alto nível de energia. Se o nível de energia é suficiente, ele pula para outro nível maior de energia, podendo escapar da atração do núcleo e ser liberado em um processo conhecido como fotoionização. Um elétron que descer ao nível de energia menor emite um fóton de luz igual a diferença de energia. Como os níveis de energia em um átomo são discretos, cada elemento tem suas próprias características de emissão e absorção.[carece de fontes]

 

 

TEORIA UNIFICADORA TENSORIAL G+ GRACELI

 TEORIA TENSORIAL G+ GRACELI , VISA UNIFICAR TODA A FÍSICA ATRAVÉS DO TENSOR G+ PARA CAMPOS [GRAVIDADE, ELETROMAGNETISMO, FORTE E FRACO] ONDE O ESSENCIAL É O TENSOR G+ DE CAMPOS E MOVIMENTOS, ENERGIA E ESTRUTURAS.

E UNIFICAR TAMBÉM A QUÂNTICA COM AS RELATIVIDADES.

ENQUANTO NO SISTEMA SDCTIE GRACELI, O QUE SE TEM UM SISTEMA DE MAIS DE DUZENTAS DIMENSÕES COM SUAS VARIAÇÕES, E CATEGORIAS, ESTADOS FÍSICOS, QUÍMICO, FENOMÊNICOS E TRANSIÇÕES DE ESTRUTURAS, INTERAÇÕES E TRANSFORMAÇÕES, FORMANDO UM SISTEMA COM CINCO PILARES.




TENSOR G+ GRACELI =ENERGIA = ONDAS = GEOMETRIA CURVA = GRAVIDADE E OUTROS CAMPOS = MOMENTUM = FENÔMENOS = INTERAÇÕES = TRANSFORMAÇÕES = TEMPO = ESPAÇO

 



TEORIA GERAL DE GRACELI COM O TENSOR GRACELI = G + = TENSOR CURVATURA-ONDA-ENERGIA-CAMPOS GRACELI.

 TEORIA GERAL DE GRACELI COM O TENSOR GRACELI =  G +



ENERGIA = ONDAS = GEOMETRIA CURVA =  GRAVIDADE E OUTROS CAMPOS = MOMENTUM = FENÔMENOS = INTERAÇÕES = TRANSFORMAÇÕES = TEMPO = ESPAÇO



G + = GRAVIDADE E TENSOR CURVATURA-ONDA GRACELI. = RELAÇÃO DE CONTINUUM E UNICIDADE ENTRE ENERGIA, ONDAS, GEOMETRIA, E CAMPOS. = G + É MAIS ABRANGENTE E FORMA UMA UNICIDADE ENTRE A QUÂNTICA, RELATIVIDADES [GERAL E RESTRITA] GEOMETRIA, E TEORIA DE CAMPOS, ELETROQUÂNTICA, CORDAS, TEORIA M, E ELETROMAGNETISMO, E OUTRAS.




TENSOR CURVATURA-ONDA-ENERGIA-CAMPOS GRACELI. [CAMPOS: GRAVIDADE, ELETROMAGNETISMO, FORTE E FRACO].


RELAÇÃO DE CONTINUUM E UNICIDADE ENTRE ENERGIA, ONDAS, GEOMETRIA, E CAMPOS. = G +





CURVATURA-ONDA GRACELI NA GRAVIDADE, CAMPOS [ELETROMAGNÉTICO, FORTE FRACO, E NA QUÃNTICA].

 

CURVATURA-ONDA GRACELI.

TODA TEORIA QUÃNTICA ,E OUTROS RAMOS DA QUÃNTICA DEVE SER REESCRITA COM O TENSOR CURVATURA-ONDA DE GRACELI.

 

CURVATURA-ONDA  GRACELI.


SISTEMA FÍSICO GEOMÉTRICO QUE VARIA EM RELAÇÃO AO TEMPO, DE DENTRO PARA FORA NUM FLUXO DE COMEÇO-FIM CONTINUADO.


COM VARIAÇÕES NO ESPAÇO E TEMPO, MASSA E ENERGIA CONFORME O MOVIMENTO E A INTENSIDADE DA ONDA, FREQUÊNCIA E ALCANCE.


NUM CONTINUUM ESPAÇO-TEMPO-ENERGIA-MOMENTUM-MASSA-INTERAÇÕES E TRANSFORMAÇÕES.



COM EFEITO SOBRE GRAVIDADE, ELETROMAGNETISMO, E CAMPOS FORTE E FRACO.


OU SEJA, SE TEM UMA  RELAÇÃO ENTRE A QUÂNTICA DE CAMPOS E ONDAS, COM A RELATIVIDADE, E ONDE A RELATIVIDADE PASSA A SER ONDULATÓRIA. OBEDECENDO A CURVATURA ONDA PARTÍCULA DE GRACELI.




Great Animated Physics Waves Gifs at Best Animations Física Moderna, Formulas Matemática, Gerador De Energia, Truques De Matemática, Engenharia Mecânica, Papel De Parede De Fundo, Astronomia, Ilusões Legais, Ilusões De Óticas


G + = GRAVIDADE E TENSOR CURVATURA-ONDA GRACELI. = RELAÇÃO DE CONTINUUM E UNICIDADE ENTRE ENERGIA, ONDAS, GEOMETRIA, E CAMPOS. = G +

COM ALCANCE PARA CAMPOS ELETTROMAGNÉTICO, E FORTE E FRACO.


G + = O SÍMBOLO G NO SISTEMA DE TENSOR E CURVATURA-ONDA GRACELI TANTO É A GRAVIDADE QUANTO O PRÓPRIO TENSOR CURVATURA-ONDA GRACELI, FORMANDO UMA RELAÇÃO E CONTÍNUUM ENTRE A QUÂNTICA [TEORIA DE ONDAS] E A RELATIVIDADE GERAL, E VARIAÇÕES DO ESPAÇO E TEMPO DENTRO DO SISTEMA DE TENSOR CURVATURA-ONDA GRACELI.


----------------------------------------

G +  E SDCTIE GRACELI          


Comentários

Postagens mais visitadas deste blog

teoria Graceli - onda-partícula-densidade de carga, incerteza [ONDA-PARTÍCULA-DENSIDADE DE CARGA], E FUNÇÃO QUÂNTICA COM DENSIDADE DE ARGA.